The statistical restricted isometry property and the Wigner semicircle distribution of incoherent dictionaries
نویسندگان
چکیده
In this article we present a statistical version of the Candès-Tao restricted isometry property (SRIP for short) which holds in general for any incoherent dictionary which is a disjoint union of orthonormal bases. In addition, we show that, under appropriate normalization, the eigenvalues of the associated Gram matrix fluctuate around λ = 1 according to the Wigner semicircle distribution. The result is then applied to various dictionaries that arise naturally in the setting of finite harmonic analysis, giving, in particular, a better understanding on a remark of Applebaum-Howard-Searle-Calderbank concerning RIP for the Heisenberg dictionary of chirp like functions.
منابع مشابه
Incoherent dictionaries and the statistical restricted isometry property
In this paper we formulate and prove a statistical version of the Candès-Tao restricted isometry property (SRIP for short) which holds in general for any incoherent dictionary which is a disjoint union of orthonormal bases. In addition, we prove that, under appropriate normalization, the eigenvalues of the associated Gram matrix fluctuate around λ = 1 according to the Wigner semicircle distribu...
متن کاملStatistical RIP and Semi-Circle Distribution of Incoherent Dictionaries
In this paper we formulate and prove a statistical version of the Candès-Tao restricted isometry property (SRIP for short) which holds in general for any incoherent dictionary which is a disjoint union of orthonormal bases. In addition, we prove that, under appropriate normalization, the eigenvalues of the associated Gram matrix fluctuate around λ = 1 according to the Wigner semicircle distribu...
متن کاملOrthogonal Matching Pursuit with random dictionaries
In this paper we investigatet the efficiency of the Orthogonal Matching Pursuit for random dictionaries. We concentrate on dictionaries satisfying Restricted Isometry Property. We introduce a stronger Homogenous Restricted Isometry Property which is satisfied with overwhelming probability for random dictionaries used in compressed sensing. We also present and discuss some open problems about OMP.
متن کاملCompressed Sensing with Coherent and Redundant Dictionaries
This article presents novel results concerning the recovery of signals from undersampled data in the common situation where such signals are not sparse in an orthonormal basis or incoherent dictionary, but in a truly redundant dictionary. This work thus bridges a gap in the literature and shows not only that compressed sensing is viable in this context, but also that accurate recovery is possib...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0812.2602 شماره
صفحات -
تاریخ انتشار 2008